

Voltage Transducer AV 100 Series

For the electronic measurement of voltages: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

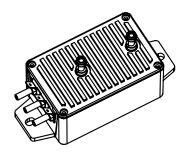
Electrical data

Туре	Primary nominal voltage rms	Primary Voltage, measuring range	primary coil resistance
	$\mathbf{V}_{PN}\left(V\right)$	$\mathbf{V}_{_{\mathrm{PM}}}\left(V\right)$	$\mathbf{R}_{_{\mathrm{P}}}\left(\Omega\right)$
AV 100-50	50	± 75	6M
AV 100-125	125	± 187.5	6M
AV 100-150	150	± 225	6M
AV 100-250	250	± 375	6M
AV 100-500	500	± 750	6M
AV 100-750	750	± 1125	8.9M
AV 100-1000	1000	± 1500	11.9M
AV 100-1500	1500	± 2250	17.8M
AV 100-2000	2000	± 3000 1)	17.8M

$\hat{m{V}}_{\!\!\!P}$	Peak primary voltage 2)	2 x V _{PN}	,(1s/h)	V_{DC}
$R_{_{\mathrm{M}}}$	Measuring resistance	$R_{_{ m Mmin}}$	$R_{\text{M max}}$	
	@ V _C = 11.4 V	0	47	Ω
	@ V _c = 22.8 V	0	184	Ω
I_{SN}	Secondary nominal current rms	50		mΑ
V _C	Supply voltage (± 5 %)	DC ± 1	2 24	V
I _c	Static Current consumption	50 + I _s		mA

Accuracy - Dynamic performance data

Overall Accuracy @ V _{PN} , T _A = 25°C	± 0.7	%
Overall Accuracy @ V _{PN} , TA = - 25 + 70°C	± 1.5	%
Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = -40 + 85 °C$	± 1.7	%
Linearity error @ T _A = 25°C	< 0.1	%
Offset current @ $V_P = 0$, $T_A = 25^{\circ}C$	± 0.15	mA
Response time	< 30	μs
Frequency bandwidth (-3 dB)	DC11	kHz
	Overall Accuracy @ \mathbf{V}_{PN} , $TA = -25 + 70 ^{\circ}C$ Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = -40 + 85 ^{\circ}C$ Linearity error @ $\mathbf{T}_{A} = 25 ^{\circ}C$ Offset current @ $\mathbf{V}_{P} = 0$, $\mathbf{T}_{A} = 25 ^{\circ}C$ Response time	Overall Accuracy @ V_{PN} , $TA = -25 + 70 °C$ ± 1.5 Overall Accuracy @ V_{PN} , $T_A = -40 + 85 °C$ ± 1.7 Linearity error @ $T_A = 25 °C$ < 0.1 Offset current @ $V_P = 0$, $T_A = 25 °C$ ± 0.15 Response time < 30


General data

$T_{_{A}}$	Ambient operating temperature	- 40 + 85	°C
\mathbf{T}_{s}	Ambient storage temperature	- 50 + 90	°C
m	Mass	375	g
	Standards	EN 50155 : (20	001)
		EN 50124-1: (2001)
		NFF16101/2:(1	1988)

Notes: 1) 500 ms every 60 minutes

²⁾ AV 100-2000 $\hat{\mathbf{V}}_{\mathbf{P}} = 4500 \text{ (1s/h)}.$

$V_{PN} = 50...2000 V$

Features

- Insulated plastic case recognized according to UL 94-V0
- Included primary resistor.

Advantages

- Low power
- Excellent accuracy
- Very good linearity
- Low thermal drift
- Low response time
- High bandwidth
- High immunity to external interference
- Low disturbance in common mode.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- · Auxiliary converter
- Battery charger.

Application Domain

• Traction.

Voltage Transducer AV 100 Series

Is	olation characteristics		
V _d	Rms voltage for AC isolation test 1), 50 Hz, 1 min		
- d	AV 100-50 to AV 100-500	3.3	KV
	AV 100-750	4.3	KV
	AV 100-1000	5.5	KV
	AV 100-1500 and AV 100-2000	6.5	KV
	Max Common mode voltage	$U_{HT+} + U_{HT-} \le 4.21$	<vdc< th=""></vdc<>
	and	$\left \overrightarrow{U}_{HT+} - \overrightarrow{U}_{HT-} \right \leq V_{P}$	M
\mathbf{V}_{e}	Partial discharge extinction voltage rms @ 10 pc		
	AV100-50 to AV 100-750	1.1	ΚV
	AV100-1000 to AV100-2000	2.2	ΚV
		min	
dCp	Creepage distance	59	mm
dCl	Clearance distance	30	mm
CTI	Comparative tracking index (Group II)	600	

Note: 1) Between primary and secondary.

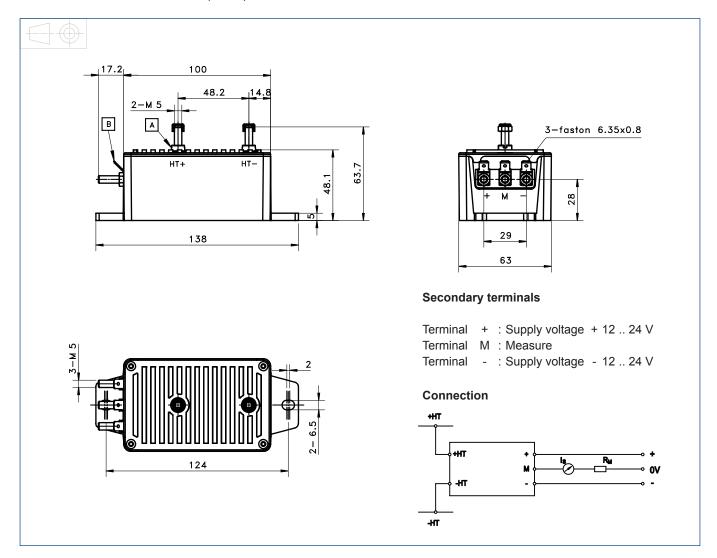
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions AV 100 Series (in mm)

Mechanical characteristics

Recommended fastening torque

• General tolerance ± 1 mm

• Transducer fastening 2 holes \varnothing 6.5 mm

> 2 M6 screw 124 mm

Distance between holes Recommended fastening torque

4 Nm

• Fastening & connection of primary 2 M5 threaded studs

2.2 Nm

• Fastening & connection of secondary 3 M5 or 3 Faston

6.35 x 0.8 mm

Recommended fastening torque 2.2 Nm

Output connections must be made with screened cables

Remarks

ullet I_S is positive when ullet p is applied on terminal +HT.